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Nonparametric Methods in Directional Data
Analysis

S. Rao Jammalamadaka

1. Introduction

In many natural and physical sciences the observations are in the form of
directions — directions either in plane or in three-dimensional space. Such is the
case when a biologist investigates the flight directions of birds or a geologist
measures the paleomagnetic directions or an ecologist records the directions of
wind or water. A convenient sample frame for two-dimensional directions is
the circumference of a unit circle centered at the origin with each point on the
circumference representing a direction; or, equivalently, since magnitude has
no relevance, each direction may be represented by a unit vector. Such data on
two-dimensional directions will be called ‘circular data’, Similarly the surface of
a unit sphere in three-dimensions may be used as the sample space for
directions in space, with each point on the surface representing a three-
dimensional direction; or alternatively, such a direction may be represented by
a unit vector in three-dimensions. Such data is referred to as the ‘spherical
data’. Also, studies on any periodic phenomena with a known period (such as
circadian rhythms in animals) can be represented as circular data,ﬂﬁer instance
by identifying each cycle or period with points on the circumference, pooling
observations over several such periods, if necessary.

The analysis of directional data gives rise to a host of novel statistical
problems and does not fit into the usual methods of statistical analysis which
one employs for observations on the real line or Euclidean space. Since there is
1o natural zero-direction, any method of numerically representing a direction
depends on the arbitrary choice of this zero direction. It is important that the
Statistical analyses and conclusions remain independent of this arbitrary zero
direction, Unfortunately, however, usual statistics like the arithmetic mean and
Standard deviation (and all the higher moments) which one employs in linear
Statistical analyses fail to have this required rotational invariance so that one is
forced 10 seek alternate statistics for describing directional data. To do this, we
treat each direction as a unit vector in plane or space, One computes the
r‘fSUll'Tml vector, whose direction provides a meaningful measure of the average
direction jn unimodal populations. The length of this vector resultant measures
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the concentration of the data since observations closer together lead to a longer
resultant.

One of the basic parametric models for unimodal directional data is called
the von Mises—Fisher distribution and is discussed briefly in Section 2. This
plays as prominent a role in a directional data analysis as does the normal
distribution in the linear case. Sections 3 and 4 review nonparametric methods
for circular (two-dimensional) and spherical (three-dimensional) data, respec-
tively. Section 3 is considerably larger since more distribution-free methods
have been developed for circular data. The reader may consult the books by
Mardia (1972), Batschelet (1981) and Watson (1983) for a more complete
introduction to this novel area of statistics.

2. The von Mises-Fisher model for directional data

A parametric model which plays a central role in directional data analysis is
called the von Mises-Fisher distribution. In general, if x is a unit vector in
p-dimensions (p = 2) or equivalently, represents a point on S,, the surface of a
unit ball in p dimensions, then the probability density of the von Mises-Fisher
distribution is of the form

Gy() explic * x'p) @.1)

where k >0 is a concentration parameter and the unit vector g denotes the
mean direction. Here the normalizing constant

Cy(k) = kW2 [[2m) P2 Lyp-1(k)] (2.2)

where I,(«) is the modified Bessel function of the first kind and order r. When
p = 2, this density reduces to

fla | k, w) = [2mIy(k)] " explk - cos(a — p)] 2.3)

where 0 <a <2m and 0<u <2w are the angles (in polar coordinates) cor-
responding to x and g in (2.1). This density was introduced by von Mises
(1918) to test the hypothesis that the atomic weights are integers. When p =3,
Fisher (1953) studied the pdf with zero mean direction,

K .
fla, Bl k)= me" oS sin o 2.4)

where 0 <« <7 and 0 < B8 <27 are the polar coordinates of x. Fishgr’s 1953
paper is the first comprehensive treatment of the sampling distributions an
statistical inference for the spherical model (2.4).

If the concentration parameter « =0 in (2.1), this reduces to the uniform
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(isotropic) distrib_ution on S, For k>0, this is a unimodal distribution with
mode at x = u. Since the likelihood for a sample of n observations is given by

[G(x)]" -exp(k * R'p)

whe.re R is .the vector resultant of the sample, R is a sufficient statistic for this
family of distributions. The Maximum Likelihood Estimator of M is given by

(1/|R|)- R, where IR| is the length of the resultant. The concentration
parameter « is estimated by solving the equation

Il(K) _ ﬂ
IU(K)_ n

for p =2, and the equation

COthK—l=|£l
K n

for p=3. Various one- and two-sample tests on the parameters can be
Performcd using R. See, for instance, Chapters 6 and 8 of Mardia (1972). One
important preliminary test is to verify if indeed there is a preferred dire;;:lion
i.e., Hy: k =0. The UMP invariant test for this is based on the length of lht;
resultant, |R|, whose density under the null hypothesis of uniform distribution
(or random walk model) is given (for r > 0) by “

r J': Jr)T3(0)t de

when p =2, and

r S A . ek,
TV () -2

w.hen P =, 3 Here (x) = x if x>0 and 0 otherwise. This test of ‘no preferred
direction’, i.e., of Hp: k = 0 which is based on |R|, is known as Rayleigh’s test.

3. Nonparametric methods for circular data

Though considerable statistical theory has been developed for the von
Mlses—-F1§her distribution and to a much lesser extent for some of the other
g:;g;rilett.rlc models for directiox}s, _thes_e models may not provide an adequate
instanlc)elo‘n fof the ‘data or the dlstr}butloqal information may be imprecise. For
e Information about the ummodal?ty or axial symmetry that a particular

metric model assumes may be lacking or might be inappropriate for a
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given data set. The search for methods which are robust leads naturally, as in
linear statistical inference, to techniques which are nonparametric or model-
free. In linear inference, there are a number of considerations on which one
can justify for instance an assumption of normality as for example when one
deals with averages, or when the samples are large enough. Unfortunately,
there is no corresponding rationale for invoking the von Mises—Fisher dis-
tribution and thus the need for model-free methods might indeed be stronger
in directional data analysis.

This section will be subdivided into three subsections dealing with one-, two-
and multi-sample nonparametric techniques.

3.1. One-sample tests and the goodness-of-fit problem

For simplicity, let us assume that the circle has unit circumference and that
the circular data is presented in terms of angles (o1, ..., ) with 0 ;<1
with respect to some arbitrary zero direction. Given such a random sample,
one of the fundamental problems in circular data is to test if there is no
preferred direction against the alternative of one (or more) preferred direc-
tion(s). Since having no preferred direction corresponds to a uniform (or
isotropic) distribution, the null hypothesis to test is

Hy:  a ~ uniform distribution on [0, 1). 3.1

As in the linear case, the goodness-of-fit problem of testing whether the sample
came from a specified circular distribution can also be reduced to testing
uniformity on the circle.

We seek rotationally invariant tests, i.e., tests invariant under changes in
zero direction as well as the sense of rotation (clockwise or anticlockwise).
There are three broad groups of tests for this problem, which are described
below.

(i) Tests based on sample arc lengths or spacings. If ay<--- < a, denote
the order statistics in the linear sense, the differences

a”,f = (a(i)— a(l)), l s 2, msne bl s (32)
form a maximal invariant. But if one defines
D,- = ((1(,’)_ a(,-_l)), l = 1, S 1 (33)

with ag) = (@~ 1), these are the lengths of the arcs into which the sample
partitions the unit circumference and are called the sample spacings. Clearly
af =2, D; Any symmetric function of the sample spacings will have lil‘f.f
rotational invariance property, and Rao (1969) suggested the use of sucl? a cIat:{-
of spacings tests for testing Hy in (3.1). See Rao (1976) and the references
contained there. In particular the statistic

*
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n n
1 1 1
D D~——’ = max(D—— 0)
2| D= 21 = (3.4)

corresponds to the uncovered portion of the circumference when n arcs of
length (1/n) are placed to cover the circumference starting at each of the
ob_scrvalions. Its exact and asymptotic distributions and a table of percentage
points are given in Rao (1976) and reproduced in Batschelet (1981). Among all
such symmetric test statistics, the one based on 3

tic i=1 (D;— 1/n ), which is referred |
Lo as the Greenwood statistic, has asymptotically maximum local power. Burrows i'i

(1979), Currie (1981) and Stephens (1981) discuss computational methods for
obtaining the percentage points of Greenwood’s statistic. See also Rao and Kuo
(1984) for a discussion of some variants of this statistic which are asymptotically
better. Another group of spacings statistics are based on ordered spacings. In
particular, if Dy,)= max -, D, then R, = (1— Dy,) is referred to as the ‘circular
range’, the shortest arc on the circumference containing all the observations, This
is discussed in Rao (1969) and Laubscher and Rudolph (1968).

(ii) Tests based on empirical distribution functions. Given the random
sample «,,...,a, on the circumference [0,1), one can define the empirical
distribution function (in the usual linear sense) as

Fu(x)= number,;)f =X (3.5)

for 0=<x <1. The usual test statistics like the Kolmogorov-Smirnov statistic

K, = \/gos;up1 |F(x)~ x| (3.6)

or the Cramer-von Mises statistic

Wi=n fo (Fy(x) ~ x) dx (.7)

do not have the required invariance property. Kuiper (1960) suggested the

f()'llow.ing variation of (3.6) which is rotationally invariant and hence usable
with circular data. Let

D; = sup (F,(n)—x) and D5 = sup (x - F,(x)). (3.8)

O=x<l O=x<1

Whil i isti i
¢ the Kolmogorov—Smirnov statistic K, = max(D;, D7), Kuiper’s statistic

V.=Vn(D;+D;). (3.9)

It 5 0 . B
§ asymptotic null distribution (under the hypothesis (3.1) of uniformity) is
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given by (cf. Kuiper, 1960)

P(V,, = x) — i 2(4m2x2_ 1) e~2m2x2

m=1

33}‘_ S midmix? - 3) 2 4 o(%) (3.10)
1z m=1

for x =0. Stephens (1965) provides upper percentage points for small p,
Watson (1961) defined an invariant version of (3.7), namely

Ui=n [ [Rw-x-[ B~ ay] & (3.11)

for use with circular data. Observe that U? is of the for_m pf a varianc.e while
W7 is like the second moment. The asymptotic null distribution is given by
(refer to Watson, 1961)

lim P(U3>x)=2 3 (-1)" ! e 2™ (312)
n-o m=1

for x =0. .
(iii) Scan statistics and chi-square-type tests. Ajne (19§8) suggested two test
statistics based on the number of observations in a half-circle

. B 1
N(a) = number of observations in [, @ +3)
for 0 =< o <1. One of them is to take

N = sup N(a), (3.13)

O=a<l

the maximum number in any half-circle. As Rao (1969) andlBhattacharya an(cji
Johnson (1969) pointed out, this is related to a bivarlate' sign test sugges'te
earlier by Hodges (1955). The exact null distribution of N is given by (cf. Ajne,
1968)

2k —n) < n (3.14)
PN = k)= 2 (k+ ok - )

for k = [n/2] + 1 which reduces for k >%n to the simpler expression

The asymptotic null distribution of

R EERERrRErELmmm
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2 n
Vn 2
is given by
lim P(N* > ¢) = 2¢ \/% S e-eimien (3.15)

j=0

for ¢ =2 0. Rothman (1972) considered the maximum number of observations in

any arc of length p, 0 <p < 1. These are related to the scan statistics. See, for
instance, Naus (1982).

Another statistic for testing uniformit
considering

y is obtained by averaging, i.e., by

A, = fo 1 (N(a)—%)z da . (3.16)

The asymptotic null distribution of A, is given by

. 2 41y
1 >x)= S 2D o ip
P == 3 e

for x = 0. The statistic in (3.16) has been
by Beran (1969a) and Rao (1972b). R
circumference into m (=2) equal class

generalized in two different directions
ao (1972b) considered dividing the unit
intervals with the i-th interval being

Ii(a):[a-l-(l;l—l),a-i-L), i=1,...,m.

m

Using the observed class frequencies Ny(a), i=1, ... , m in these intervéls, one
can construct a y? statistic yi(a)= 37, (Ni(@) = nfm}*/(n/m). This can be made
invariant with respect to the-choice of origin & by taking either the supremum
OVer « or alternately by averaging as in (3.16), namely,

Xn= fol Xi(e)da. (3.17)

The statistic A, corresponds to y2 with m = 2. The asymptotic null distribution
of xZ in (3.17) and a computational form for it are provided in Rao (1972b).
Beran (1969a) proposed the class of test statistics of the form

gl = fo 1 [21 (fla+ a)— 1)]2 da (3.18)

Where f i any probability density function on the circle. It can be verified that
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A and U? defined in (3.16) and (3.11) are of this form. Beran (19699) (;bia)uns

thn aaI; mp;otic distribution of this statistic under the nL}ll hyp;thhes(ljs ( 5.10 aes
ell aZ under fixed alternatives and derives the appr0x1'mate. a fa ur allpkj

¥Zsts based on T, are best invariant against local alternatives (i.e., for sm

of the form

g(as k)= 1+ k(fla+ po)—1), 0<a<1, 0=k=1.

If we define

h(6)=2 >, p?cos pd
p=1
where

i 2
o= || eria)dal,
then T, can be rewritten as

ra i i h6i-6). (3.19)

i=1j=1

5‘33‘ o examplc‘ishj::dilia(;g'(?l-i;?g[:t.) .lcgfmi:igd the various tests of un_ifurmily

o C{:'lmpgahadl:lr efficiencies using von Mises—Fishgr alterna.lwef\' (cf.
lhmug'h [ ;":)) with small concentration. For this situation Ray]e.lgh s.lest
F(lu?;l::: t%n;,‘length [R| of the resultant is }mifprmly most pnw:':rful ,:?vsrzla(rj;.
';”T-lS:se comparisons based on Bahadur efficiencies show that Wdtsft;n s (,,N L“
(3.11)) and Ajne’s A, (cf. (3.16)) tests have ll:e samc;: a;gng&;gtE:A;:;n;c.‘t:g}
the Rayleigh test, while Kuiper’s test (Ff' (3.9)) and t t,bom Sgl% il
(cf. (3.13)) have a lower asymptotic efﬁmencg{ of 3!'!{ ora S et
the former group of test statistics. Symmetrlc spacings t}rl,:-;t:v.mr qmpa“ Ao
totic efficiencies but Monte Carlo comparisons sh_ow‘t a s{ e
hey have reasonable power compared to Raylelgh‘s test. Step ] A”wem
. . Kuiper's V,, Watson’s U2 and Ajne’s A, using Monte Carlo px i i.n.
(;;TPL:EZIuSiois indi"t‘:atc that while these three tests are aboul i:q[li_:lting
Pc;f.ormance against unimodal altern.atwes: dn’fe'regc:esvshfc'a;\;“;[t)he Foope .
uniformity against multimodal a;l;ternatwes with Kuiper’s V,, fz

; ing in that order. . . i
U"()E:;:gr‘j::efizﬁ:;feg;es!s. Schach (1969b) applies the Wllgoxond51%1111|:;_1 1;:5]::1&\ r‘{i:
for testing the hypothesis of symmetry. Rgthmap .(197 1()1 ane Eurt ‘bi\r;[rialc
(1977) consider the problem of testing coordinate indepen f:nc. '!’of o
data on a torus. There are a number of papers on therlup:tr, el -
measures of association for angu]ar—angu!ar or angular- 1;:@ rcfcrc‘nccs i,
them nonparametric. See Jupp and Mardia (1980) and l?l crl. e 61 TOT
tained there for measures of correlation for the angular—angular cas

which will then possess the re

such an invariant version of the Wilcoxon-Mann
vided

obt
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observations on a torus. Fisher and Lee

analogous to Kendall’s = for measurin
distribution.

(1981) develop a U-statistic which is
g angular linear association and derive its

Lenth (1981) utilizes a periodic version of the commonly used  functions to
adapt robust M-estimation for use with directional data,

3.2. Two-sample tests

The usual nonparametric theory for the two-sample observations in the
combined sample. See, e.g., Hajek and Sidak (1967). Since rank values on a
circle depend on the starting point as well as the sense of rotation, such rank

tests cannot be used with circular data. Schach (1969a) defines wh
called the ‘circular ranks’, which remain inv

transformations. Let (ay,..., a,) and (Bi, . .
random samples from F and G respectivel

at may be
ariant under the following group of
., Bs) denote the two independent
¥, the hypothesis of interest being

Hy: F(a)=G(a), Osa<1. (3.20)

Let (ry,..., r.) denote the (linear

) ranks of the first sample in the combined
sample of N =

(m + n) observations in the usual fashion, and let

R=A(r,,....m):(r, ..., rn) is a permutation of integers(1,..., N)}
be the space of rank vectors for the combined sample. Define groups of

transformations {g} (corresponding to changes in zero direction) and {h}
(corresponding to changes in sense of rotation), of R onto itself by

8:(rs . m)=>(n+ 1 iy +1)

and

h:(rl,...,rN)—>(N+l—rN,...,N+1—r1)

where the components of the transformed vector are defined modulo N, Let ¢
be the group of transformations R — R

define circular ranks (C,, ..., Cy) of (ay,
[ PR rm) under the group,
linear rank test T'(r) based on

generated by {g} and {h}. Wg may

.y @,) as an equivalence class of
9. One can then define, corresponding to any
linear ranks r, a circular rank test

T(c)= S-L.'f; T(g*(r)

quired invariance. Batschelet (1965) suggested

—~Whitney statistic and pro-
a short table of critical values, Epplett (1982) pursues this further and
ains its asymptotic null distribution.
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Let F,(x) and G,(x) denote the empirical distribution functions of the o’s
and B’s, respectively. Define

D}, = supl [Frn(x)— Ga(x)] (3.21)
0=x<
- D, = sup1 [G.(x)— F,(x)]. (3.22)
0=x<
Let r=(r,..., rm) denote the linear ranks and
Wpn(r) = E ri (3.23)
i=1

the Wilcoxon test statistic. Then Epplett (1982) shows that the circular version

Wm.n (C) = Sup Wm"(g*(r))

g ey )
= max{W,,,(r)+ mnD},,, m(N + 1)~ Wn(r)+ mnD3, .}
(3.24)

and establishes that \/mnN{W,,,‘,,(c)—%m(N + 1)} converges in distribution tg
that of sup,/S(t)] where S(r) is a Gaussian process with zero mean an

covariance kernel
K(s, )=1—3(—s)1—(t=9))

for 0 <s=1=1. This test is shown to compare favorably with 'the two-sample
Kuiper test (see Equation (3.25)) in terms of Bahadur eﬂ?gu_ency. Tl;‘umg,h
inclusion—exclusion, Epplett (1979) relates the exact probaabl!ltles for ‘t L=:;l:e
cular statistic to those of the linear Wilcoxon statistic and provides a recurre
relation. el ‘ . . . .

(i) Tests based on empirical distribution functions. S'..nce 1hel two s.fmig:ucl
versions of the Kolmogorov—Smirnov and Cramer—\rtfn Mises Smtls;“’f a;; -
rotationally invariant, they are inappropriate for lesFm:g the hypot 1;3515 ,;,;;:,\-_.
Kuiper (1960) suggested the following two-sample variation of the Kolmog
Smirnov statistic:

(3.25)
Vm.n = (D:—n.n + D:"Jl)

jc null
where D3, and Dj,, are as defined in (3.21) and (3.22). I.ts as;llg;ptg:ri :
distributioﬁ, properly normalized, is the same as that given in (3.10).
Shudde (1973) show that
(3:26)
Vin = SUp Do (8%(r))

g*c9
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where D, , = max(D;,,, D;,,) is the usual two-sample Kolmogorov—Smirnov

statistic. Similarly, a two-sample version of (3.11) was proposed by Watson
(1962), namely

Ut = [ [Fut0)= G0~ [ )~ 6,00 abiv) [ abu o)

(3.27)

where F, (x) and G,(x) are the empirical distribution functions of «’s and B’s
respectively and Hy(x) = [mF,(x)+ nG,(x)]/N. The asymptotic null dis-
tribution of U7, is again the same as that given in Equation (3.12).

(i) Tests based on uniform scores. Beran (1969b) pointed out that two-
sample tests for the hypothesis (3.20) can be obtained from tests of uniformity

as follows: If (ry,...,r,) denote the (linear) ranks of the first sample in the
combined sample, then define

u; = r,'/N, = 1,. o AL 3 (328)

called the ‘uniform scores’. Under the null hypothesis F = G, these scores must
be uniformly distributed on the circle of unit circumference. Thus any ftest of
uniformity discussed in Section 3.1 can then be used on {u} to test the
hypothesis (3.20). A test which rejects this hypothesis for large values of R,
the length of the resultant of {u,i=1,..., m} was proposed by Wheeler and
Watson (1964). Mardia (1967) considered the statistic based on |R|| in con-
nection with a bivariate location problem. Mardia (1969) and Schach (1969a)
discuss the asymptotic power and consistency properties of the Wheeler and

Watson statistic. Schach (1969a) considers a general class of statistics of the
[orm

Ton=2,

m
i=1j=

hN (Ll,' ' u/') ﬁ(x‘ (329)

which corresponds to the two-sample adaptation of Beran's statistic T, (cf,
(3.19)) and shows that the asymptotic null distribution of (N — 1)T,,./mn)
is the same as that of the one-sample statistic T, if n/N. = A, 0< A < 1.

(iii) Tests based on spacing-frequencies. For the general two-sample prob-
lem, Holst and Rao (1980) investigate families of statistics based on the
‘spacing-frequencies’. These are the frequencies of one sample, say f;'s, that

fall in between the spacings made by the other sample. Thus the spacing-
frequencies are defined by

S,' = number of ,Bj’S in [a(,;l), a(,-)), i= 1, e (1 (330)

where {a} are ordered. Statistics based symmetrically on {S, i =1,..., m} are
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clearly rotation invariant. Thus one may use test statistics of the form
T = 2 hn(S) (3.31)
i=1

for ‘reasonable’ functions hy(-). The circular run test (cf. David apd Barton,
1962) and a test suggested by Dixon (1940) based on =i §2, are special cases of
this form. Holst and Rao (1980) show that under mild conditions on hy(:), the
statistics T,,, are asymptotically normal and that the Dixon test based on 27" §2
is asymptotically locally most powerful among'this class. Some fu.rther power
comparisons and the special relevance of this class (3.31) to circular data
problems are discussed in Rao and Mardia (1980). More recently, tests based
on k-th order spacing-frequencies (for fixed finite k), i.e., on S = t.he number
of observations in [a -1, &+i-1y), are considered in Rao and Schweitzer (1982)
where it is shown that among tests symmetric in {S%®)}, which can be used for
circular distributions, 27, S%)? is asymptotically locally most powerful.

3.3. Multi-sample tests for circular data

Given a random sample of size n;, say (a;y, . . ., @, ) from the i-th popglation,
i=1,...,k oneis interested in tests of homogeneity of these k pppulatlons. If
these populations are unimodal, such tests of homogeneity (a) with respect to
mean directions and (b) with respect to concentrations are proposed for large
samples in Rao (1966) and are further discussed in Yoshimura (1978)..

A k-sample analogue of Watson’s U7, , (see Equation (3.27)) and its asymp-
totic null distribution are discussed in Maag (1966). Multisample analogues of
other statistics like V,,, (Equation (3.25)) do not appear to have' be.en con-
sidered in the literature. A test based on multiple runs on the circle is discussed
in David and Barton (1962, pp. 119-136) and this has a long history. One can
also construct tests based on ‘uniform scores’

4y = 1IN (3.32)

where {r;, u=1,..., n;} are the ranks of the i-th sample obser_vations among
the combined sample of N = (n;+ - - -+ n;) observations. Mardia (1972b) con-
siders a test based on the statistic

23> (R¥n) 63

i=1

i 2 i 2
R2= (2 cos 211-u,»,-> i <2 sin 21Tu,,->
=1

i=1

where

. : le.
is the squared length of the resultant for the uniform sc.:ores of thf: l-fthr S?:;gng
The statistic in (3.33) corresponds to the log likelihood ratio for B8 °-
homogeneity of mean directions of k von Mises—Fisher distributions
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also be thought of as an extension of the Wheeler and Wat
earlier. Mardia (1972b) also shows that t
the parametric competitor for the von Mises-Fisher distributions, has 2

Bahadur efficiency approaching one as the concentration parameter of the von
Mises—Fisher distributions approaches zero.

son test mentioned
he test in (3.33) when compared with

4. Nonparametric methods for spherical data

Most of statistical methods developed for one-, two- or multi-sample spheri-
cal problems assume parametric models like the von Mises—Fisher distribution
in (2.4) or other distributions with different properties. There has not been, in
general, as much progress in developing useful nonparametric tests for spheri-
cal data. Though this is somewhat analogous to the situation in regard to
nonparametric procedures for multivariate statistical analyses, it seems that
there is scope for progress here along the lines of Puri and Sen (1971).

4.1. One-sample problem-testing uniformity

Beran (1968) considered a class of statistics similar to (3.18) for the more
general problem of testing uniformity on a compact homogeneous space. He
shows that this test is locally most powerful invariant and derives the asymp-

totic null distribution of the statistic. Specifically for the sphere, an analogue of
(3.19) is based on

n 1
T, :Z_E.Z Wi “4.1)
i<j

where ; is the smaller angle between the i-th and J-th observations (in polar
coordinates) (e, ) and (a,, B;). Gates and Westcott (1980) discuss bounds on
the distribution of the minimum interpoint angular distance ¢ = min,-,,m%u'nder
the hypothesis of uniformity. Giné (1975) considers a class of invarianftests for
uniformity based on Sobolev norms, which contains as special cases tests for
uniformity on the circle, thé sphere and the hemisphere (where the antipodes
are identified) introduced earlier by Rayleigh, Watson (1961), Ajne (1968), Rao
(1972b), Beran (1968) and Bingham (1964). Prentice (1978) follows along the
lines of Giné (1975) and Beran (1968) to obtain a class of invariant tests for
spheres and hemispheres in any dimension p = 1. Stephens (1966) tabulates the
percentage points of three statistics which are useful in testing uniformity on
the sphere against specified alternatives listed.

4.2. Two-sample tests for spherical data

Wellner (1979) considers a class of permutation tests for the two-
problem when

fold., Special
unit sphere

sample
the data come from any arbitrary compact Riemannian mani-

cases of interest include tests for comparing two samples from the
in three dimensions or the hemisphere or the torus. The test

*
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statistics are the two-sample analogues of Gine’s (1975) tests of uniformity. As
with any permutation test, the idea is to calculate an invariant statistic T,,, for
all (";") choices of the first sample relabellings and reject the null hypothesis of
identical distributions if the observed T, is ‘too big’ relative to the resulting
conditional distribution (conditional on the pooled sample). Specified con-
sistency properties and asymptotic distributions under the null and fixed
alternatives are derived. Two-sample versions of the various test statistics of
uniformity are discussed as examples.
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